Immunotherapy for ovarian cancer is improved by tumor targeted delivery of a neoantigen surrogate.

Journal: BioRxiv : The Preprint Server For Biology
Published:
Abstract

Ovarian cancer is known for its poor neoantigen expression and strong immunosuppression. Here, we utilized an attenuated non-pathogenic bacterium Listeria monocytogenes to deliver a highly immunogenic Tetanus Toxoid protein (Listeria-TT), as a neoantigen surrogate, into tumor cells through infection in a metastatic mouse ovarian cancer model (Id8p53-/-Luc). Gemcitabine (GEM) was added to reduce immune suppression. Listeria-TT+GEM treatments resulted in tumors expressing TT and reactivation of pre-existing CD4 and CD8 memory T cells to TT (generated early in life). These T cells were then attracted to the TT-expressing tumors now producing perforin and granzyme B. This correlated with a strong reduction in the ovarian tumors and metastases, and a significant improvement of the survival time compared to all control groups. Moreover, two treatment cycles with Listeria-TT+GEM doubled the survival time compared to untreated mice. Checkpoint inhibitors have little effect on ovarian cancer partly because of low neoantigen expression. Here we demonstrated that Listeria-TT+GEM+PD1 was significantly more effective (efficacy and survival) than PD1 or Listeria-TT+GEM alone, and that more treatment cycles with Listeria-TT+GEM+PD1 significantly increased the survival time compared to Listeria-TT+GEM alone. In summary, the results of this study suggest that our approach may benefit ovarian cancer patients.

Authors
Lauren Scanlon, Lisa Gabor, Olivia Khouri, Shahbaz Ahmad, Evan Levy, Dennis Kuo, Ken Lin, Nicole Nevadunsky, Claudia Gravekamp
Relevant Conditions

Tetanus, Ovarian Cancer